A Bayesian Student Model without Hidden Nodes and its Comparison with Item Response Theory
نویسندگان
چکیده
The Bayesian framework offers a number of techniques for inferring an individual’s knowledge state from evidence of mastery of concepts or skills. A typical application where such a technique can be useful is Computer Adaptive Testing (CAT). A Bayesian modeling scheme, POKS, is proposed and compared to the traditional Item Response Theory (IRT), which has been the prevalent CAT approach for the last three decades. POKS is based on the theory of knowledge spaces and constructs item-to-item graph structures without hidden nodes. It aims to offer an effective knowledge assessment method with an efficient algorithm for learning the graph structure from data. We review the different Bayesian approaches to modeling student ability assessment and discuss how POKS relates to them. The performance of POKS is compared to the IRT two parameter logistic model. Experimental results over a 34 item UNIX test and a 160 item French language test show that both approaches can classify examinees as master or non-master effectively and efficiently, with relatively comparable performance. However, more significant differences are found in favor of POKS for a second task that consists in predicting individual question item outcome. Implications of these results for adaptive testing and student modeling are discussed, as well as the limitations and advantages of POKS, namely the issue of integrating concepts into its structure.
منابع مشابه
Project Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملA multilevel Bayesian item response theory method for scaling
A new method is presented and implemented for deriving a scale of socioeconomic status (SES) from international survey data using a multilevel Bayesian item response theory (IRT) model. The proposed model incorporates both international anchor items and nation-specific items and is able to (a) produce student family SES scores that are internationally comparable, (b) reduce the influence of irr...
متن کاملA Multilevel Bayesian Item Response Theory Method for Scaling Socioeconomic Status in International Studies of Education
A new method is presented and implemented for deriving a scale of socioeconomic status (SES) from international survey data using a multilevel Bayesian item response theory (IRT) model. The proposed model incorporates both international anchor items and nation-specific items and is able to (a) produce student family SES scores that are internationally comparable, (b) reduce the influence of irr...
متن کاملComputer Adaptive Testing: Comparison of a Probabilistic Network Approach with Item Response Theory
Bayesian and probabilistic networks are claimed to offer powerful approaches to inferring an individual’s knowledge state from evidence of mastery of concepts or skills. A typical application where such tools can be useful is Computer Adaptive Testing (CAT). Bayesian networks have been proposed as an alternative to the traditional Item Response Theory (IRT), which has been the prevalent CAT app...
متن کاملItem-based Bayesian Student Models
Many intelligent educational systems require a component that represents and assesses the knowledge state and the skills of the student. We review how student models can be induced from data and how the skills assessment can be conducted. We show that by relying on graph models with observable nodes, learned student models can be built from small data sets with standard Bayesian Network techniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Artificial Intelligence in Education
دوره 15 شماره
صفحات -
تاریخ انتشار 2005